Cochlear Hair-Cell Recovery

J Biomed Opt. 2012 Jun;17(6):068002.

Effect of low-level laser treatment on cochlea hair-cell recovery after acute acoustic trauma.

Rhee CK, Bahk CW, Kim SH, Ahn JC, Jung JY, Chung PS, Suh MW.


Dankook University, Medical Laser Research Center, Cheonan, Republic of Korea.


We investigated the effect of low-level laser radiation on rescuing hair cells of the cochlea after acute acoustic trauma and hearing loss. Nine rats were exposed to noise. Starting the following day, the left ears (NL ears) of the rats were irradiated at an energy output of 100 to 165 mW/cm(2) for 60 min for 12 days in a row. The right ears (N ears) were considered as the control group. Frequency-specific hearing levels were measured before the noise exposure and also after the 1st, 3rd to 5th, 8th to 10th and 12th irradiations. After the 12th treatment, hair cells were observed using a scanning electron microscope. Compared to initial hearing levels at all frequencies, thresholds increased markedly after noise exposure. After the 12th irradiation, hearing threshold was significantly lower for the NL ears compared to the N ears. When observed using an electron microscope, the number of hair cells in the middle turn of the NL ears was significantly larger than that of the N ears. Our findings suggest that low-level laser irradiation promotes recovery of hearing thresholds after acute acoustic trauma.

Lasers Med Sci.  2011 Dec 4. [Epub ahead of print]

Effect of low-level laser therapy on cochlear hair cell recovery after gentamicin-induced ototoxicity.

Rhee CK, He P, Jung JY, Ahn JC, Chung PS, Suh MW.


Department of Otolaryngology-Head & Neck Surgery, Dankook University College of Medicine, Cheonan, Korea.


Cochlear hair cells are the sensory receptors of the auditory system. It is well established that antibiotic drugs such as gentamicin can damage hair cells and cause hearing loss. Rescuing hair cells after ototoxic injury is an important issue in hearing recovery. Although many studies have indicated a positive effect of low-level laser therapy (LLLT) on neural cell survival, there has been no study on the effects of LLLT on cochlear hair cells. Therefore, the aim of this study was to elucidate the effects of LLLT on hair cell survival following gentamicin exposure in organotypic cultures of the cochlea of rats. The cochlea cultures were then divided into a control group (n=8), a laser-only group (n=8), a gentamicin-only group (n=8) and a gentamicin plus laser group (n=7). The control cultures were allowed to grow continuously for 11 days. The laser-only cultures were irradiated with a laser with a wavelength of 810 nm at 8 mW/cm(2) for 60 min per day (0.48 J/cm(2)) for 6 days. The gentamicin groups were exposed to 1 mM gentamicin for 48 h and allowed to recover (gentamicin-only group) or allowed to recover with daily irradiation (gentamicin plus laser group). The hair cells in all groups were stained with FM1-43 and counted every 3 days. The number of hair cells was significantly larger in the gentamicin plus laser group than in the gentamicin-only group. The number of hair cells was larger in the laser-only group than in the control group, but the difference did not reach statistical significance. These results suggest that LLLT may promote hair cell survival following gentamicin damage in the cochlea. This is the first study in the literature that has demonstrated the beneficial effect of LLLT on the recovery of cochlear hair cells