Oncology

Technol Health Care. 2011;19(6):455-67.

Solid Ehrlich tumor growth treatment by magnetic waves.

Ali FM, El Gebaly RH, El Hag MA, Rohaim AM.

Source 

Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt. 

Abstract 

In this work the retardation of Ehrlich tumor growth implanted in mice was studied by employing 4.5 Hz magnetic field. Eighty female Balb/c mice were used, twenty as normal group; the other sixty mice were inoculated with Ehrlich tumor, then they were divided equally into three groups namely A, B and C. Group A (control group) animals were not exposed to the magnetic field. The tumors in the thigh of the animals of group B were exposed to 4.5 Hz, 2 Gauss square wave magnetic field by using a small solenoid connected to a power square wave generator. Group C animals were whole body exposed inside a large solenoid to 4.5 Hz, 2 Gauss square wave magnetic field. Both groups B and C were exposed for a period of 2 weeks at a rate 2 hours per day. Tumor volume, survival period, histological examination and dielectric relaxation of the tumor were measured to investigate the activity of the tumor of the exposed and the unexposed animals. The results indicated that exposing the tumor tissue to 4.5 Hz square wave magnetic field for 2 weeks at a rate 2 hours/day inhibited tumor growth and increased the survival period of the animals. However, group B showed more improvements than did group C. This was attributed to some distortions in the square waveform in the large solenoid (group C). By comparing data from current and previous work, it was concluded that the use of magnetic waves showed better results over previously published work using amplitude modulated electromagnetic waves with the same frequency. 

/Expert Opin Investig Drugs. 2011 Aug;20(8):1099-106. doi: 10.1517/13543784.2011.583236. Epub 2011 May 9. 

Tumor treating fields: concept, evidence and future.

Pless M, Weinberg U.

Source 

Medical Oncology, Department of Internal Medicine, and Tumor Center, Kantonsspital Winterthur, Brauerstrasse, Switzerland. miklos.pless@ksw.ch 

Abstract 

INTRODUCTION: Local control is fundamental, both for the curative as well as the palliative treatment of cancer. Tumor treating fields (TTFields) are low intensity (1 ? 2 V/cm), intermediate frequency (100 ? 200 kHz) alternating electric fields administered using insulated electrodes placed on the skin surrounding the region of a malignant tumor. TTFields were shown to destroy cells within the process of mitosis via apoptosis, thereby inhibiting tumor growth. TTFields have no effect on non-dividing cells. 

AREAS COVERED: This article reviews in vitro and in vivo preclinical studies, demonstrating the activity of TTFields both as a monotherapy as well as in combination with several cytotoxic agents. Furthermore, it summarizes the clinical experience with TTFields, mainly in two indications: one in recurrent glioblastoma multiforme: in a large prospective randomized Phase III trial TTFields was compared with best standard care (including chemotherapy): TTFields significantly improved median overall survival (OS) compared with standard therapy (7.8 vs 6.1 months) for the patients treated per protocol. Importantly, quality of life was also better in the TTFields group. The second indication was a Phase II study in second-line non-small cell lung cancer, where TTFields was administered concomitantly with pemetrexed. This combination resulted in an excellent median OS of 13.8 months. Interestingly, the progression-free survival (PFS) within the area of the TTFields was 28, however, outside the TTFields the PFS was only 22 weeks. 

EXPERT OPINION: The proof of concept of TTFields has been well demonstrated in the preclinical setting, and the clinical data seem promising in various tumor types. The side effects of TTFields were minimal and in general consisted of skin reaction to the electrodes. There are a number of ways in which TTFields could be further evaluated, for example, in combination with chemotherapy, as a maintenance treatment, or as a salvage therapy if radiotherapy or surgery is not possible. While more clinical data are clearly needed, TTFields is an emerging and promising novel treatment concept. 

Electromagn Biol Med. 2010 Dec;29(4):132-43. 

Bioelectromagnetic field effects on cancer cells and mice tumors.

Berg H, Günther B, Hilger I, Radeva M, Traitcheva N, Wollweber L.

Source 

Laboratory Bioelectrochemistry, Beutenberg Campus, Jena, Germany. 

Abstract 

We present possibilities and trends of ELF bioelectromagnetic effects in the mT amplitude range on cancer cells and on mice bearing tumors. In contrast to invasive electrochemotherapy and electrogenetherapy, using mostly needle electrodes and single high-amplitude electropulses for treatment, extremely low-frequency (ELF) pulsating electromagnetic fields (PEMF) and sinusoidal electromagnetic fields (SEMF) induce tumor cell apoptosis, inhibit angiogenesis, impede proliferation of neoplastic cells, and cause necrosis non invasively, whereas human lymphocytes are negligibly affected. Our successful results in killing cancer cells-analyzed by trypan blue staining or by flow cytometry-and of the inhibition of MX-1 tumors in mice by 15-20?mT, 50?Hz treatment in a solenoid coil also in the presence of bleomycin are presented in comparison to similar experimental results from the literature. In conclusion, the synergistic combinations of PEMF or SEMF with hyperthermia (41.5°C) and/or cancerostatic agents presented in the tables for cells and mice offer a basis for further development of an adjuvant treatment for patients suffering from malignant tumors and metastases pending the near-term development of suitable solenoids of 45-60?cm in diameter, producing >20?mT in their cores. 

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2010 Oct;27(5):1128-32.

Focusing properties of picosecond electric pulses in non-invasive cancer treatment.

[Article in Chinese]
Long Z, Yao C, Li C, Mi Y, Sun C.

Source 

State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China. longzaiquan@foxmail.com 

Abstract 

In the light of optical theory, we advanc an ultra-wideband impulse radiating antenna (IRA) which is composed of an ellipsoidal reflector and a cone radiator. The high-intensity ultra-short electric pulses radiated by IRA can be transferred into the deep target in tissue non-invasively and be focused effectively. With the focused picosecond electric pulses, the organelles (mitochondria) transmembrane potential shall change to collapse under which the tumor cells will be targetly induced to apoptosis, so the method of non-invasive treatment of tumors would be achieved. Based on the time-domain electromagnetic field theory, the propagation characteristics of picosecond electric pulses were analyzed with and without the context of biological tissue, respectively. The results show that the impulse characteristics of input pulse were maintained and the picosecond electric pulses can keep high resolution in target areas. Meanwhile, because of the dispersive nature of medium, the pulse amplitude of the pulses will attenuate and the pulse width will be broadened. 

BMC Cancer. 2010 Apr 24;10:159. 

Anti-proliferative effect of extremely low frequency electromagnetic field on preneoplastic lesions formation in the rat liver.

Jiménez-García MN, Arellanes-Robledo J, Aparicio-Bautista DI, Rodríguez-Segura MA, Villa-Treviño S, Godina-Nava JJ. 

Department of Physics Center of Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico. jj@fis.cinvestav.mx 

Abstract 

BACKGROUND: Recently, extremely low frequency electromagnetic fields (ELF-EMF) have been studied with great interest due to their possible effects on human health. In this study, we evaluated the effect of 4.5 mT-120 Hz ELF-EMF on the development of preneoplastic lesions in experimental hepatocarcinogenesis. 

METHODS: Male Fischer-344 rats were subjected to the modified resistant hepatocyte model and were exposed to 4.5 mT – 120 Hz ELF-EMF. The effects of the ELF-EMF on hepatocarcinogenesis, apoptosis, proliferation and cell cycle progression were evaluated by histochemical, TUNEL assay, caspase 3 levels, immunohistochemical and western blot analyses. 

RESULTS: The application of the ELF-EMF resulted in a decrease of more than 50% of the number and the area of gamma-glutamyl transpeptidase-positive preneoplastic lesions (P = 0.01 and P = 0.03, respectively) and glutathione S-transferase placental expression (P = 0.01). The number of TUNEL-positive cells and the cleaved caspase 3 levels were unaffected; however, the proliferating cell nuclear antigen, Ki-67, and cyclin D1 expression decreased significantly (P < or = 0.03), as compared to the sham-exposure group. 

CONCLUSION: The application of 4.5 mT-120 Hz ELF-EMF inhibits preneoplastic lesions chemically induced in the rat liver through the reduction of cell proliferation, without altering the apoptosis process. 

Cell Biochem Biophys. 2009;55(1):25-32. Epub 2009 Jun 18. 

Evaluation of the potential in vitro antiproliferative effects of millimeter waves at some therapeutic frequencies on RPMI 7932 human skin malignant melanoma cells.

Beneduci A. 

Department of Chemistry, University of Calabria, Via P. Bucci, Cubo 17/D, Arcavacata di Rende (CS), Italy.beneduci@unical.it 

Abstract 

The potential antiproliferative effects of low power millimeter waves (MMWs) at 42.20 and 53.57 GHz on RPMI 7932 human skin melanoma cells were evaluated in vitro in order to ascertain if these two frequencies, comprised in the range of frequency used in millimeter wave therapy, would have a similar effect when applied in vivo to malignant melanoma tumours. Cells were exposed for 1 h exposure/day and to repeated exposure up to a total of four treatments. Plane wave incident power densities <1 mW/cm(2) were used in the MMWs-exposure experiments so that the radiations did not cause significant thermal effects. Numerical simulations of Petri dish reflectivity were made using the equations for the reflection coefficient of a multilayered system. Such analysis showed that the power densities transmitted into the aqueous samples were < or = 0.3 mW/cm(2). Two very important and general biological endpoints were evaluated in order to study the response of melanoma cells to these radiations, i.e. cell proliferation and cell cycle. Herein, we show that neither cell doubling time nor the cell cycle of RPMI 7932 cells was affected by the frequency of the GHz radiation and duration of the exposure, in the conditions above reported. 

— ———————————————————————————— 

Bioelectrochemistry. 2010 Oct;79(2):257-60. Epub 2010 Mar 10. 

Electroporation and alternating current cause membrane permeation of photodynamic cytotoxins yielding necrosis and apoptosis of cancer cells.

Traitcheva N, Berg H. 

Institute of Plant Physiology “M. Popov,” Bulgarian Acad. of Sciences, Sofia, Bulgaria. 

Abstract 

In order to increase the permeability of cell membranes for low doses of cytostatic drugs, two bioelectrochemical methods have been compared: (a) electric pore formation in the plasma membranes by single electric impulses (electroporation), and (b) reordering of membrane structure by alternating currents (capacitively coupled). These treatments were applied to human leukemic K-562 cells and human lymphoma U-937 cells, yielding apoptotic and necrotic effects, determined by flow cytometry. Additional cell death occurs after exposure to light irradiation at wavelengths lambda > 600 nm, of cells which were electroporated and had incorporated actinomycin-C or daunomycin (daunorubicin). It is observed that drug uptake after an exponentially decaying electroporation pulse of the initial field strength Eo=1.4 kV/cm and pulse time constants in the time range 0.5-3 ms is faster than during PEMF-treatment, i.e., application of an alternating current of 16 kHz, voltage U<100 V, I=55 mA, and exposure time 20 min. However, at the low a.c. voltage of this treatment, more apoptotic and necrotic cells are produced as compared to the electroporation treatment with one exponentially decaying voltage pulse. Thus, additional photodynamic action appears to be more effective than solely drugs and electroporation as applied in clinical electrochemotherapy, and more effective than the noninvasive pulsed electromagnetic fields (PEMFs), for cancer cells in general and animals bearing tumors in particular. 

Arch Biochem Biophys. 2010 May;497(1-2):82-9. Epub 2010 Mar 24. 

Nanosecond pulsed electric fields stimulate apoptosis without release of pro-apoptotic factors from mitochondria in B16f10 melanoma.

Ford WE, Ren W, Blackmore PF, Schoenbach KH, Beebe SJ. 

Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA. 

Abstract 

Nanosecond pulsed electric fields (nsPEFs) eliminates B16f10 melanoma in mice, but cell death mechanisms and kinetics of molecular events of cell death are not fully characterized. Treatment of B16f10 cells in vitro resulted in coordinate increases in active caspases with YO-PRO-1 uptake, calcium mobilization, decreases in mitochondria membrane potential with decreases in forward light scatter (cell size), increases in ADP/ATP ratio, degradation of actin cytoskeleton and membrane blebbing. However, there was no mitochondrial release of cytochrome c, AIF or Smac/DIABLO or generation of reactive oxygen species. Phosphatidylserine externalization was absent and propidium iodide uptake was delayed in small populations of cells. The results indicate that nsPEFs rapidly recruit apoptosis-like mechanisms through the plasma membrane, mimicking the extrinsic apoptosis pathway without mitochondrial amplification yet include activation of initiator and executioner caspases. nsPEFs provide a new cancer therapy that can bypass cancer-associated deregulation of mitochondria-mediated apoptosis in B16f10 melanoma. 

J Physiol Pharmacol. 2010 Apr;61(2):201-5. 

Pulsating electromagnetic field stimulation prevents cell death of puromycin treated U937 cell line.

Kaszuba-Zwoinska J, Wojcik K, Bereta M, Ziomber A, Pierzchalski P, Rokita E, Marcinkiewicz J, Zaraska W, Thor P. 

Department of Pathophysiology, Jagiellonian University Medical College, Cracow, Poland. jkaszuba@cm-uj.krakow.pl 

Abstract

Aim of study was to verify whether pulsating electromagnetic field (PEMF) can affect cancer cells proliferation and death. U937 human lymphoid cell line at densities starting from 1 x 10(6) cells/ml to 0.0625 x 10(6) cells/ml, were exposed to a pulsating magnetic field 50 Hz, 45+/-5 mT three times for 3 h per each stimulation with 24 h intervals. Proliferation has been studied by counting number of cells stimulated and non-stimulated by PEMF during four days of cultivation. Viability of cells was analyzed by APC labeled Annexin V and 7-AAD (7-amino-actinomycin D) dye binding and flow cytometry. Growing densities of cells increase cell death in cultures of U937 cells. PEMF exposition decreased amount of cells only in higher densities. Measurement of Annexin V binding and 7-AAD dye incorporation has shown that density-induced cell death corresponds with decrease of proliferation activity. PEMF potentiated density-induced death both apoptosis and necrosis. The strongest influence of PEMF has been found for 1 x 10(6)cells/ml and 0.5 x 10(6) cells/ml density. To eliminate density effect on cell death, for further studies density 0.25 x 10(6) cells/ml was chosen. Puromycin, a telomerase inhibitor, was used as a cell death inducer at concentration 100 microg/ml. Combined interaction of three doses of puromycin and three fold PEMF interaction resulted in a reduced of apoptosis by 24,7% and necrosis by 13%. PEMF protects U937 cells against puromycin- induced cell death. PEMF effects on the human lymphoid cell line depends upon cell density. Increased density induced cells death and on the other hand prevented cells death induced by puromycin. 

Int J Radiat Biol. 2010 Feb;86(2):79-88. 

Growth of injected melanoma cells is suppressed by whole body exposure to specific spatial-temporal configurations of weak intensity magnetic fields.

Hu JH, St-Pierre LS, Buckner CA, Lafrenie RM, Persinger MA. 

Department of Biology, Laurentian University, Sudbury, Ontario, Canada. 

Abstract 

PURPOSE: To measure the effect of exposure to a specific spatial-temporal, hysiologically-patterned electromagnetic field presented using different geometric configurations on the growth of experimental tumours in mice. 

METHODS: C57b male mice were inoculated subcutaneously with B16-BL6 melanoma cells in two blocks of experiments separated by six months (to control for the effects of geomagnetic field). The mice were exposed to the same time-varying electromagnetic field nightly for 3 h in one of six spatial configurations or two control conditions and tumour growth assessed. 

RESULTS: Mice exposed to the field that was rotated through the three spatial dimensions and through all three planes every 2 sec did not grow tumours after 38 days. However, the mice in the sham-field and reference controls showed massive tumours after 38 days. Tumour growth was also affected by the intensity of the field, with mice exposed to a weak intensity field (1-5 nT) forming smaller tumours than mice exposed to sham or stronger, high intensity (2-5 microT) fields. Immunochemistry of tumours from those mice exposed to the different intensity fields suggested that alterations in leukocyte infiltration or vascularisation could contribute to the differences in tumour growth. 

CONCLUSIONS: Exposure to specific spatial-temporal regulated electromagnetic field configurations had potent effects on the growth of experimental tumours in mice. 

Melanoma Res. 2009 Aug 26. [Epub ahead of print] 

Histopathology of normal skin and melanomas after nanosecond pulsed electric field treatment.

Chen X, James Swanson R, Kolb JF, Nuccitelli R, Schoenbach KH. 

Department of Hepatobiliary Surgery, the First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China bFrank Reidy Research Center for Bioelectrics cDepartment of Biological Sciences, Old Dominion University, Norfolk, Virginia, USA. 

Abstract 

Nanosecond pulsed electric fields (nsPEFs) can affect the intracellular structures of cells in vitro. This study shows the direct effects of nsPEFs on tumor growth, tumor volume, and histological characteristics of normal skin and B16-F10 melanoma in SKH-1 mice. A melanoma model was set up by injecting B16-F10 into female SKH-1 mice. After a 100-pulse treatment with an nsPEF (40-kV/cm field strength; 300-ns duration; 30-ns rise time; 2-Hz repetition rate), tumor growth and histology were studied using transillumination, light microscopy with hematoxylin and eosin stain and transmission electron microscopy. Melanin and iron within the melanoma tumor were also detected with specific stains. After nsPEF treatment, tumor development was inhibited with decreased volumes post-nsPEF treatment compared with control tumors (P<0.05). The nsPEF-treated tumor volume was reduced significantly compared with the control group (P<0.01). Hematoxylin and eosin stain and transmission electron microscopy showed morphological changes and nuclear shrinkage in the tumor. Fontana-Masson stain indicates that nsPEF can externalize the melanin. Iron stain suggested nsPEF caused slight hemorrhage in the treated tissue. Histology confirmed that repeated applications of nsPEF disrupted the vascular network. nsPEF treatment can significantly disrupt the vasculature, reduce subcutaneous murine melanoma development, and produce tumor cell contraction and nuclear shrinkage while concurrently, but not permanently, damaging peripheral healthy skin tissue in the treated area, which we attribute to the highly localized electric fields surrounding the needle electrodes. 

Cancer Biol Ther. 2009 Sep;8(18):1756-62. Epub 2009 Sep 17. 

Static magnetic fields impair angiogenesis and growth of solid tumors in vivo.

Strelczyk D, Eichhorn ME, Luedemann S, Brix G, Dellian M, Berghaus A, Strieth S. 

Walter-Brendel-Center for Experimental Medicine (WBex), Campus Grosshadern, University of Munich (LMU), Munich, Germany. 

Abstract 

Exposure to static magnetic fields (SMFs) results in a reduced blood flow in tumor vessels as well as in activation and adherence of platelets. Whether this phenomenon may have a significant functional impact on tumors has not been investigated as yet. The aim of our study was to evaluate the effects of prolonged exposure to SMFs on tumor angiogenesis and growth. Experiments were performed in dorsal skinfold chamber preparations of Syrian Golden hamsters bearing syngenic A-Mel-3 melanomas. On 3 d following tumor cell implantation one group of animals was immobilized and exposed to a SMF of 586 mT for three h. Control animals were immobilized for the same duration without SMF exposure. Using in vivo-fluorescence microscopy the field effects on tumor angiogenesis and microcirculation were analyzed for seven days. Tumor growth was assessed by repeated planimetry of the tumor area during the observation period. Exposure to SMFs resulted in a significant retardation of tumor growth ( approximately 30%). Furthermore, histological analysis showed an increased peri- and intratumoral edema in tumors exposed to SMFs. Analysis of microcirculatory parameters revealed a significant reduction of functional vessel density, vessel diameters and red blood cell velocity in tumors after exposure to SMFs compared to control tumors. These changes reflect retarded vessel maturation by antiangiogenesis. The increased edema after SMF exposure indicates an increased tumor microvessel leakiness possibly enhancing drug-uptake. Hence, SMF therapy appears as a promising new anticancer strategy-as an inhibitor of tumor growth and angiogenesis and as a potential sensitizer to 

J Exp Clin Cancer Res. 2009 Apr 14;28:51. 

Amplitude-modulated electromagnetic fields for the treatment of cancer: discovery of tumor-specific frequencies and assessment of a novel therapeutic approach.

 Barbault A, Costa FP, Bottger B, Munden RF, Bomholt F, Kuster N, Pasche B. 

Cabinet Médical, Avenue de la Gare 6, Lausanne, Switzerland. alexandre.barbault@gmail.com

Abstract 

PURPOSE: Because in vitro studies suggest that low levels of electromagnetic fields may modify cancer cell growth, we hypothesized that systemic delivery of a combination of tumor-specific frequencies may have a therapeutic effect. We undertook this study to identify tumor-specific frequencies and test the feasibility of administering such frequencies to patients with advanced cancer.
PATIENTS AND METHODS: We examined patients with various types of cancer using a noninvasive biofeedback method to identify tumor-specific frequencies. We offered compassionate treatment to some patients with advanced cancer and limited therapeutic options.
RESULTS: We examined a total of 163 patients with a diagnosis of cancer and identified a total of 1524 frequencies ranging from 0.1 Hz to 114 kHz. Most frequencies (57-92%) were specific for a single tumor type. Compassionate treatment with tumor-specific frequencies was offered to 28 patients. Three patients experienced grade 1 fatigue during or immediately after treatment. There were no NCI grade 2, 3 or 4 toxicities. Thirteen patients were evaluable for response. One patient with hormone-refractory breast cancer metastatic to the adrenal gland and bones had a complete response lasting 11 months. One patient with hormone-refractory breast cancer metastatic to liver and bones had a partial response lasting 13.5 months. Four patients had stable disease lasting for +34.1 months (thyroid cancer metastatic to lung), 5.1 months (non-small cell lung cancer), 4.1 months (pancreatic cancer metastatic to liver) and 4.0 months (leiomyosarcoma metastatic to liver).
CONCLUSION: Cancer-related frequencies appear to be tumor-specific and treatment with tumor-specific frequencies is feasible, well tolerated and may have biological efficacy in patients with advanced cancer.
 
J Ethnopharmacol. 2009 Jun 22;123(2):293-301. Epub 2009 Mar 24.

Induction of apoptosis in human hepatocarcinoma SMMC-7721 cells in vitro by flavonoids from Astragalus complanatus.

Hu YW, Liu CY, Du CM, Zhang J, Wu WQ, Gu ZL. 

Department of Pharmacology, Medical College of Soochow University, 199 RenAi Road, Suzhou 215123, PR China. 

Abstract

AIM OF THE STUDY: Flavonoids extracted from the seeds of Astragalus complanatus R.Br. reduce the proliferation of many cancer cells. The present study was carried out to evaluate the effects of these flavonoids from Astragalus complanatus (FAC) on human hepatocarcinoma cell viability and apoptosis and to investigate its mechanisms of action in SMMC-7721 cells. 

MATERIALS AND METHODS: Cell viability was measured using the MTT assay. To detect apoptotic cells, SMMC-7721 cells treated with FAC were stained with Hoechst 33258 and subjected to agarose gel electrophoresis. Quantitative detection of apoptotic cells was performed by flow cytometry. The effects of FAC on apoptosis and cell cycle regulatory genes and proteins in SMMC-7721 cells were examined using an S series apoptosis and cell cycle gene array and Western blot analysis. 

RESULTS: The growth of SMMC-7721 and HepG2 cells was inhibited by treatment with FAC. Cell death induced by FAC was characterized by nuclear condensation and DNA fragmentation. Moreover, the cell cycle was arrested in the G0/G1 and S phases in FAC-treated SMMC-7721 cells. A sub-G1 peak with reduced DNA content was also formed. The activity of caspase-3 was significantly increased following FAC treatment. Microarray data indicated that the expression levels of 76 genes were changed in SMMC-7721 cells treated with FAC: 35 genes were up-regulated and 41 were down-regulated. Western blot analysis showed that caspase-3, caspase-8, Bax, P21, and P27 protein levels in SMMC-7721 cells were increased after 48 h of FAC treatment, while cyclinB1, cyclinD1, CDK1, and CDK4 protein levels were decreased. 

CONCLUSIONS: These results suggest that FAC may play an important role in tumor growth suppression by inducing apoptosis in human hepatocarcinoma cells via mitochondria-dependent and death receptor-dependent apoptotic pathways. 

Anticancer Res. 2008 Jul-Aug;28(4B):2245-51. 

Effect of steep pulsed electric field on proliferation, viscoelasticity and adhesion of human hepatoma SMMC-7721 cells.

Song G, Qin J, Yao C, Ju Y. 

Department of Bioengineering, College of Bioengineering, Ministry of Education of China, Chongqing University, Chongqing, PR China. 

song@cqu.edu.cn 

Abstract 

It has been proven that steep pulsed electric field (SPEF) can directly kill tumor cells and plays an important role in anticancer treatment. The biorheological mechanisms, however, that destroy tumor cells are almost unknown. To resolve this issue, here, an SPEF generator was used to assess the effects of high- and low-dose SPEF on the proliferation of human hepatoma SMMC-7721 cells by MTT assay, and on the viscoelasticity, adhesion of SMMC-7721 cells to endothelial cells by micropipette aspiration technique. Viability and proliferation of SPEF-treated SMMC-7721 cells were significantly inhibited. Cell cycle analysis indicated that SPEF arrested the cell cycle progression of SMMC-7721 cells at the G0/G1 transition to the S-phase. Viscoelastic data fitted by a standard linear solid model showed that viscoelasticity of SMMC-7721 cells changed after treatment with SPEF. Moreover, the adhesive force of low-dose SPEF-treated SMMC-7721 cells to endothelial cells markedly decreased compared to that of control cells. These results suggest that the suppressant effects of SPEF on the proliferation of SMMC-7721 cells appeared to be mediated, at least in part, through arresting cell cycle progression and altering the viscoelastic and adhesive properties of the cells, which provides a novel biorheological mechanism for the antitumor therapy of SPEF.

 
 

The Effect of Intense Subnanosecond Electrical Pulses on Biological Cells

 Schoenbach, K.H. Shu Xiao Joshi, R.P. Camp, J.T. Heeren, T. Kolb, J.F. Beebe, S.J.
Old Dominion Univ., Norfolk; 

This paper appears in: Plasma Science, IEEE Transactions on
Publication Date: April 2008
Volume: 36, Issue: 2, Part 1
On page(s): 414-422
Location: Eindhoven, Netherlands,
ISSN: 0093-3813
INSPEC Accession Number: 9921271
Digital Object Identifier: 10.1109/TPS.2008.918786
Current Version Published: 2008-04-08 

 
 
 
AbstractNanosecond electrical pulses have been successfully used to treat melanoma tumors by using needle arrays as pulse delivery systems. Reducing the pulse duration of intense electric field pulses from nanoseconds into the subnanosecond range will allow us to use wideband antennas to deliver the electromagnetic fields into tissue with a spatial resolution in the centimeter range. To explore the biological effect of intense subnanosecond pulses, we have developed a generator that provides voltage pulses of 160 kV amplitude, 200 ps rise time, and 800 ps pulse width. The pulses are delivered to a cylindrical Teflon chamber with polished flat electrodes at either end. The distance between the electrodes is variable and allows us to generate electric fields of up to 1 MV/cm in cell suspensions. The pulses have been applied to B16 (murine melanoma) cells, and the plasma membrane integrity was studied by means of trypan blue exclusion. For pulse amplitudes of 550 kV/cm, approximately 50% of the cells took up trypan blue right after pulsing, whereas only 20% were taking it up after 1 h. This indicates that the plasma membrane in a majority of the cells affected by the pulses recovers with a time constant of about 1 h. The cells that show trypan blue uptake after this time suffer cell death through apoptosis. Evaluation of the experimental results and molecular dynamics modeling results indicate that with a pulse duration of 800 ps, membrane charging and nanopore formation are the dominant bioelectric effects on B16 cells. This information has been used in a continuum model to estimate the increase in membrane permeability and, consequently, the increase in pore size caused by repetitive pulsing.

Conf Proc IEEE Eng Med Biol Soc. 2008;2008:1044-7. 

Experiment and mechanism research of SKOV3 cancer cell apoptosis induced by nanosecond pulsed electric field.

Yao C, Mi Y, Hu X, Li C, Sun C, Tang J, Wu X. 

State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China. 

Abstract 

This paper studies the apoptosis of human ovarian carcinoma cell Line (SKOV3) induced by the nanosecond pulsed electric field (10kV/cm, 100ns, 1 Hz) and its effect on intracellular calcium concentration ([Ca2+]i). These cells were doubly marked by Annexin V-FITC/PI, and the apoptosis rate was analyzed with flow cytometry. After AO/EB staining the morphological changes were observed under fluorescent microscope, and their ultrastructural changes were observed under scanning electron microscope (SEM). With Fluo-3/AM as calcium fluorescent marker, laser scanning confocal microscope (LSCM) was used to detect the effect of nsPEF on [Ca2+]i and the source of Ca2+. The results showed that the early apoptosis rate of the treatment group was (22.21+/-2.71)%, significantly higher than that of the control group (3.04+/-0.44)% (P<0.01). The typical features of apoptotic cell have been observed by fluorescent microscope and SEM. It is proved that nsPEF can induce apoptosis of SKOV3 cells and result in distinct increase in [Ca2+]i (P0.01), which was independent of extracellular calcium concentration (P>0.05). Since nsPEF can penetrate cell membrane due to its high frequency components, one of the mechanisms of nsPEF-induced apoptosis may be that activating intracellular calcium stores can increase the [Ca2+]i, and consequently, the apoptotic signal pathway can be induced. 

Apoptosis. 2007 Sep;12(9):1721-31. 

Nanosecond pulsed electric fields induce apoptosis in p53-wildtype and p53-null HCT116 colon carcinoma cells.

Hall EH, Schoenbach KH, Beebe SJ. 

Center for Pediatric Research, Children’s Hospital of the King’s Daughters, Department of Physiological Sciences, Eastern Virginia Medical School, PO Box 1980, Norfolk, VA 23501-1980, USA. 

Abstract 

Non-ionizing radiation produced by nanosecond pulsed electric fields (nsPEFs) is an alternative to ionizing radiation for cancer treatment. NsPEFs are high power, low energy (non-thermal) pulses that, unlike plasma membrane electroporation, modulate intracellular structures and functions. To determine functions for p53 in nsPEF-induced apoptosis, HCT116p53(+/+) and HCT116p53(-/-) colon carcinoma cells were exposed to multiple pulses of 60 kV/cm with either 60 ns or 300 ns durations and analyzed for apoptotic markers. Several apoptosis markers were observed including cell shrinkage and increased percentages of cells positive for cytochrome c, active caspases, fragmented DNA, and Bax, but not Bcl-2. Unlike nsPEF-induced apoptosis in Jurkat cells (Beebe et al. 2003a) active caspases were observed before increases in cytochrome c, which occurred in the presence and absence of Bax. Cell shrinkage occurred only in cells with increased levels of Bax or cytochrome c. NsPEFs induced apoptosis equally in HCT116p53(+/+) and HCT116p53(-/-) cells. These results demonstrate that non-ionizing radiation produced by nsPEFs can act as a non-ligand agonist with therapeutic potential to induce apoptosis utilizing mitochondrial-independent mechanisms in HCT116 cells that lead to caspase activation and cell death in the presence or absence of p-53 and Bax. 

Hell J Nucl Med. 2007 May-Aug;10(2):95-101.

Anticancer effects on leiomyosarcoma-bearing Wistar rats after electromagnetic radiation of resonant radiofrequencies.

Avdikos A, Karkabounas S, Metsios A, Kostoula O, Havelas K, Binolis J, Verginadis I, Hatziaivazis G, Simos I, Evangelou A. 

Source 

Laboratory of Physiology, Unit of Environmental Physiology, Faculty of Medicine, University of Ioannina, Greece. 

Abstract 

In the present study, the effects of a resonant low intensity static electromagnetic field (EMF), causing no thermal effects, on Wistar rats have been investigated. Sarcoma cell lines were isolated from leiomyosarcoma tumors induced in Wistar rats by the subcutaneous (s.c) injection of 3,4-benzopyrene. Furthermore, smooth muscle cells (SMC) were isolated from the aorta of Wistar rats and cultivated. Either leiomyosarcoma cells (LSC) or SMC were used to record a number of characteristic resonant radiofrequencies, in order to determine the specific electromagnetic fingerprint spectrum for each cell line. These spectra were used to compose an appropriate algorithm, which transforms the recorded radiofrequencies to emitted ones. The isolated LSC were cultured and then exposed to a resonant low intensity radiofrequency EMF (RF-EMF), at frequencies between 10 kHz to 120 kHz of the radiowave spectrum. The exposure lasted 45 consecutive minutes daily, for two consecutive days. Three months old female Wistar rats were inoculated with exposed and non-exposed to EMF LSC (4 x 10(6) LCS for animal). Inoculated with non-exposed to EMF cells animals were then randomly separated into three Groups. The first Group was sham exposed to the resonant EMF (control Group-CG), the second Group after the inoculation of LSC and appearance of a palpable tumor mass, was exposed to a non-resonant EMF radiation pattern, for 5 h per day till death of all animals (experimental control Group-ECG). The third Group of animals after inoculation of LSC and the appearance of a palpable tumor mass, was exposed to the resonant EMF radiation for 5 h per day, for a maximum of 60 days (experimental Group-I, EG-I). A fourth Group of animals was inoculated with LSC exposed to EMF irradiation and were not further exposed to irradiation (experimental Group-II, EG-II). Tumor induction was 100% in all Groups studied and all tumors were histologically identified as leiomyosarcomas. In the case of the EG-I, a number of tumors were completely regretted (final tumor induction: 66%). Both Groups of animals inoculated with exposed or non-exposed to the EMF LSC, (EG-I and EG-II, respectively) demonstrated a significant prolongation of the survival time and a lower tumor growth rate, in comparison to the control Group (CG) and the experimental control Group (ECG). However, the survival time of EG-I animals was found to be significantly longer and tumor growth rate significantly lower compared to EG-II animals. In conclusion, our results indicate a specific anticancer effect of resonant EMF irradiation. These results may possibly be attributed to (a) the duration of exposure of LSC and (b) the exposure of the entire animal to this irradiation. 

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2007 Feb;24(1):230-4. 

Biological effects and their applications in medicine of pulsed electric fields.

[Article in Chinese] 

Huang H, Song G, Wang G, Sun C. 

Key Laboratory for Biomnechanics & Tissue Engineering of the State Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China. 

Abstract

Pulsed electric fields can induce various kinds of biological effects that are essentially different from the normal electric fields, especially the interactions of Nanosecond Pulsed electric field (nsPEF) with cells. The biological effects of different pulsed electric fields on cell membranes, cytoplasmic matrixes, cell growth are introduced in this paper. Based on these effects, some applications of pulsed electric fields in cancer therapy, gene therapy, and delivery of drugs are reviewed in details. 

Biochem Biophys Res Commun. 2006 May 5;343(2):351-60. Epub 2006 Mar 10. 

Nanosecond pulsed electric fields cause melanomas to self-destruct.

Nuccitelli R, Pliquett U, Chen X, Ford W, James Swanson R, Beebe SJ, Kolb JF, Schoenbach KH. 

Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA. yaochenguo@cqu.edu.cn 

Abstract

We have discovered a new, drug-free therapy for treating solid skin tumors. Pulsed electric fields greater than 20 kV/cm with rise times of 30 ns and durations of 300 ns penetrate into the interior of tumor cells and cause tumor cell nuclei to rapidly shrink and tumor blood flow to stop. Melanomas shrink by 90% within two weeks following a cumulative field exposure time of 120 micros. A second treatment at this time can result in complete remission. This new technique provides a highly localized targeting of tumor cells with only minor effects on overlying skin. Each pulse deposits 0.2 J and 100 pulses increase the temperature of the treated region by only 3 degrees C, ten degrees lower than the minimum temperature for hyperthermia effects. 

Bioelectromagnetics. 2006 May;27(4):258-64. 

Effect of millimeter wave irradiation on tumor metastasis.

Logani MK, Szabo I, Makar V, Bhanushali A, Alekseev S, Ziskin MC. 

Richard J. Fox Center for Biomedical Physics, Temple University School of Medicine, Philadelphia, PA 19140, USA. mlogani@temple.edu 

Abstract

One of the major side effects of chemotherapy in cancer treatment is that it can enhance tumor metastasis due to suppression of natural killer (NK) cell activity. The present study was undertaken to examine whether millimeter electromagnetic waves (MMWs) irradiation (42.2 GHz) can inhibit tumor metastasis enhanced by cyclophosphamide (CPA), an anticancer drug. MMWs were produced with a Russian-made YAV-1 generator. Peak SAR and incident power density were measured as 730 +/- 100 W/kg and 36.5 +/- 5 mW/cm(2), respectively. Tumor metastasis was evaluated in C57BL/6 mice, an experimental murine model commonly used for metastatic melanoma. The animals were divided into 5 groups, 10 animals per group. The first group was not given any treatment. The second group was irradiated on the nasal area with MMWs for 30 min. The third group served as a sham control for group 2. The fourth group was given CPA (150 mg/kg body weight, ip) before irradiation. The fifth group served as a sham control for group 4. On day 2, all animals were injected, through a tail vein, with B16F10 melanoma cells, a tumor cell line syngeneic to C57BL/6 mice. Tumor colonies in lungs were counted 2 weeks following inoculation. CPA caused a marked enhancement in tumor metastases (fivefold), which was significantly reduced when CPA-treated animals were irradiated with MMWs. Millimeter waves also increased NK cell activity suppressed by CPA, suggesting that a reduction in tumor metastasis by MMWs is mediated through activation of NK cells. 

Bioelectromagnetics. 2006 Apr;27(3):226-32. 

Effect of extremely low frequency electromagnetic fields (ELF-EMF) on Kaposi’s sarcoma-associated herpes virus in BCBL-1 cells.

Pica F, Serafino A, Divizia M, Donia D, Fraschetti M, Sinibaldi-Salimei P, Giganti MG, Volpi A. 

Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy. 

pica@uniroma2.it 

Abstract

Association between extremely low frequency electromagnetic fields (ELF-EMF) and human cancers is controversial, and few studies have been conducted on their influence on oncogenic viruses. We studied the effects of 1 mT, 50 Hz sine waves, applied for 24-72 h, on Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV or HHV-8) in BCBL-1, a latently infected primary effusion lymphoma (PEL) cell line. ELF-EMF exposure did not affect the growth and viability of BCBL-1 cells, either stimulated or not with TPA. The total amount of KSHV DNA detected in ELF-EMF exposed cultures not stimulated with TPA did not differ from that of the unexposed controls (P = ns). However, in the presence of TPA stimulation, total KSHV DNA content was found higher in ELF-EMF exposed than in control BCBL-1 cultures (P = .024) at 72 h exposure, but not earlier. Viral DNA increase significantly correlated with increased mean fluorescence intensity/cell for the lytic antigen gp K8.1A/B (P < .01), but not with percentage of gp K8.1A/B-positive cells or of cells containing virions. Viral progeny produced under ELF-EMF exposure consisted mainly of defective viral particles. 

Conf Proc IEEE Eng Med Biol Soc. 2006;1:6370-2. 

Outlook for the use of focused shock waves and pulsed electric fields in the complex treatment of malignant neoplasms.

Garilevich BA, Andrianov YV, Olefir YV, Zubkov AD, Rotov AE. 

Central Air Force Clinical Hosp., Moscow, Russia. 

medic-air@mtu-net.ru 

Abstract

The experimental studies the synchronous action of electric field microsecond range with amplitude within the range of 1-7 kV/sm and shock waves with pressure before 100 MPa on cells membrane permeability of the mouse’s ascitic tumors in vitro have shown the intensification the efficiency of the forming the irreversible pores under synchronous action. Thereby, enabling the electric field in the compression phase of shock wave pulse which can essentially reduce the electric field intensity required for breakdown cell membrane. In usual condition at amplitude of electric field, specified above, electric breakdown membrane carries basically reversible nature. At the same time in the pressure field tension phase of shock-wave pulse reversible pores, created by electric field, can grow before sizes, under which wholeness membrane is not restored. Under simultaneous action on cellular suspension the shock wave and electric field with moderate intensity cells survival is reduced in 5 once in contrast with occuring at different time’s action, and in 10 once in contrast with checking. The most sensitive to influence by under study fields are cells in phase of the syntheses DNA, preparation to fission and in phase of the mitosis. Thereby, continuation of the studies on use synchronous action shock waves and pulsed electric fields in complex treatment of the tumors introduces perspectiv 

Bioelectromagnetics. 2006 Jan;27(1):64-72. 

Effects of pulsed magnetic stimulation on tumor development and immune functions in mice.

Yamaguchi S, Ogiue-Ikeda M, Sekino M, Ueno S. 

Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, Japan. 

chikko@medes.m.u-tokyo.ac.jp 

Abstract

We investigated the effects of pulsed magnetic stimulation on tumor development processes and immune functions in mice. A circular coil (inner diameter = 15 mm, outer diameter = 75 mm) was used in the experiments. Stimulus conditions were pulse width = 238 micros, peak magnetic field = 0.25 T (at the center of the coil), frequency = 25 pulses/s, 1,000 pulses/sample/day and magnetically induced eddy currents in mice = 0.79-1.54 A/m(2). In an animal study, B16-BL6 melanoma model mice were exposed to the pulsed magnetic stimulation for 16 days from the day of injection of cancer cells. A tumor growth study revealed a significant tumor weight decrease in the stimulated group (54% of the sham group). In a cellular study, B16-BL6 cells were also exposed to the magnetic field (1,000 pulses/sample, and eddy currents at the bottom of the dish = 2.36-2.90 A/m(2)); however, the magnetically induced eddy currents had no effect on cell viabilities. Cytokine production in mouse spleens was measured to analyze the immunomodulatory effect after the pulsed magnetic stimulation. tumor necrosis factor (TNF-alpha) production in mouse spleens was significantly activated after the exposure of the stimulus condition described above. These results showed the first evidence of the anti-tumor effect and immunomodulatory effects brought about by the application of repetitive magnetic stimulation and also suggested the possible relationship between anti-tumor effects and the increase of TNF-alpha levels caused by pulsed magnetic stimulation. 

Clin Cancer Res. 2005 Oct 1;11(19 Pt 2):7093s-7103s. 

Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer.

Ivkov R, DeNardo SJ, Daum W, Foreman AR, Goldstein RC, Nemkov VS, DeNardo GL. 

Triton BioSystems, Inc., Chelmsford, Massachusetts 01824, USA. rivkov@tritonbiosystems.com 

Abstract

OBJECTIVE: Magnetic nanoparticles conjugated to a monoclonal antibody can be i.v. injected to target cancer tissue and will rapidly heat when activated by an external alternating magnetic field (AMF). The result is necrosis of the microenvironment provided the concentration of particles and AMF amplitude are sufficient. High-amplitude AMF causes nonspecific heating in tissues through induced eddy currents, which must be minimized. In this study, application of high-amplitude, confined, pulsed AMF to a mouse model is explored with the goal to provide data for a concomitant efficacy study of heating i.v. injected magnetic nanoparticles. 

METHODS: Thirty-seven female BALB/c athymic nude mice (5-8 weeks) were exposed to an AMF with frequency of 153 kHz, and amplitude (400-1,300 Oe), duration (1-20 minutes), duty (15-100%), and pulse ON time (2-1,200 seconds). Mice were placed in a water-cooled four-turn helical induction coil. Two additional mice, used as controls, were placed in the coil but received no AMF exposure. Tissue and core temperatures as the response were measured in situ and recorded at 1-second intervals. 

RESULTS: No adverse effects were observed for AMF amplitudes of < or = 700 Oe, even at continuous power application (100% duty) for up to 20 minutes. Mice exposed to AMF amplitudes in excess of 950 Oe experienced morbidity and injury when the duty exceeded 50%. 

CONCLUSION: High-amplitude AMF (up to 1,300 Oe) was well tolerated provided the duty was adjusted to dissipate heat. Results presented suggest that further tissue temperature regulation can be achieved with suitable variations of pulse width for a given amplitude and duty combination. These results suggest that it is possible to apply high-amplitude AMF (> 500 Oe) with pulsing for a time sufficient to treat cancer tissue in which magnetic nanoparticles have been embedded. 

Anticancer Res. 2005 Mar-Apr;25(2A):1023-8. 

Frequency and irradiation time-dependant antiproliferative effect of low-power millimeter waves on RPMI 7932 human melanoma cell line.

Beneduci A, Chidichimo G, De Rose R, Filippelli L, Straface SV, Venuta S. 

Department of Chemistry, University of Calabria, 87036 Arcavacata di Rende (CS), Italy. beneduci@unical.it 

Abstract

The biological effects produced by low power millimeter waves (MMW) were studied on the RPMI 7932 human melanoma cell line. Three different frequency-type irradiation modes were used: the 53.57-78.33 GHz wide-band frequency range, the 51.05 GHz and the 65.00 GHz monochromatic frequencies. In all three irradiation conditions, the radiation energy was low enough not to increase the temperature of the cellular samples. Three hours of radiation treatment, applied every day to the melanoma cell samples, were performed at each frequency exposure condition. The wide-band irradiation treatment effectively inhibited cell growth, while both the monochromatic irradiation treatments did not affect the growth trend of RPMI 7932 cells. A light microscopy analysis revealed that the low-intensity wide-band millimeter radiation induced significant morphological alterations on these cells. Furthermore, a histochemical study revealed the low proliferative state of the irradiated cells. This work provides further evidence of the antiproliferative effects on tumor cells induced by low power MMW in the 50-80 GHz frequency range of the electromagnetic spectrum. 

Bioelectromagnetics. 2005 Jan;26(1):10-9. 

Effect of millimeter waves on natural killer cell activation.

Makar VR, Logani MK, Bhanushali A, Kataoka M, Ziskin MC. 

Richard J Fox Center for Biomedical Physics, Temple University School of Medicine, Philadelphia, PA 19140, USA. 

Abstract

Millimeter wave therapy (MMWT) is being widely used for the treatment of many diseases in Russia and other East European countries. MMWT has been reported to reduce the toxic effects of chemotherapy on the immune system. The present study was undertaken to investigate whether millimeter waves (MMWs) can modulate the effect of cyclophosphamide (CPA), an anticancer drug, on natural killer (NK) cell activity. NK cells play an important role in the antitumor response. MMWs were produced with a Russian-made YAV-1 generator. The device produced modulated 42.2 +/- 0.2 GHz radiation through a 10 x 20 mm rectangular output horn. Mice, restrained in plastic tubes, were irradiated on the nasal area. Peak SAR at the skin surface and peak incident power density were measured as 622 +/- 100 W/kg and 31 +/- 5 mW/cm2, respectively. The maximum temperature elevation, measured at the end of 30 min, was 1 degrees C. The animals, restrained in plastic tubes, were irradiated on the nasal area. CPA injection (100 mg/kg) was given intraperitoneally on the second day of 3-days exposure to MMWs. All the irradiation procedures were performed in a blinded manner. NK cell activation and cytotoxicity were measured after 2, 5, and 7 days following CPA injection. Flow cytometry of NK cells showed that CPA treatment caused a marked enhancement in NK cell activation. The level of CD69 expression, which represents a functional triggering molecule on activated NK cells, was increased in the CPA group at all the time points tested as compared to untreated mice. However, the most enhancement in CD69 expression was observed on day 7. A significant increase in TNF-alpha level was also observed on day 7 following CPA administration. On the other hand, CPA caused a suppression of the cytolytic activity of NK cells. MMW irradiation of the CPA treated groups resulted in further enhancement of CD69 expression on NK cells, as well as in production of TNF-alpha. Furthermore, MMW irradiation restored CPA induced suppression of the cytolytic activity of NK cells. Our results show that MMW irradiation at 42.2 GHz can up-regulate NK cell functions. 

Bioelectromagnetics. 2004 Oct;25(7):516-23. 

Combined millimeter wave and cyclophosphamide therapy of an experimental murine melanoma.

Logani MK, Bhanushali A, Anga A, Majmundar A, Szabo I, Ziskin MC. 

Richard J. Fox Center for Biomedical Physics, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA. 

mlogani@temple.edu 

Abstract

The objective of the present studies was to investigate whether millimeter wave (MMW) therapy can increase the efficacy of cyclophosphamide (CPA), a commonly used anti-cancer drug. The effect of combined MMW-CPA treatment on melanoma growth was compared to CPA treatment alone in a murine model. MMWs were produced with a Russian made YAV-1 generator. The device produced 42.2 +/- 0.2 GHz modulated wave radiation through a 10 x 20 mm rectangular output horn. The animals, SKH-1 hairless female mice, were irradiated on the nasal area. Peak SAR and incident power density were measured as 730 +/- 100 W/kg and 36.5 +/- 5 mW/cm2, respectively. The maximum skin surface temperature elevation measured at the end of 30 min irradiation was 1.5 degrees C. B16F10 melanoma cells (0.2 x 10(6)) were implanted subcutaneously into the left flank of mice on day 1 of the experiment. On days 4-8, CPA was administered intraperitoneally (30 mg/kg/day). MMW irradiation was applied concurrently with, prior to or following CPA administration. A significant reduction (P < .05) in tumor growth was observed with CPA treatment, but MMW irradiation did not provide additional therapeutic benefit as compared to CPA alone. Similar results were obtained when MMW irradiation was applied both prior to and following CPA treatment. 

Biofizika. 2004 May-Jun;49(3):545-50. 

A comparison of the effects of millimeter and centimeter waves on tumor necrosis factor production in mouse cells.

[Article in Russian] 

Sinotova OA, Novoselova EG, Glushkova OV, Fesenko EE. 

Abstract

The effects of millimeter (40 GHz) and centimeter (8.15-18.00 GHz) low-intensity waves on the production of tumor necrosis factor (TNE) in macrophages and lymphocytes from exposed mice as well as in exposed isolated cells were compared. It was found that the dynamics of TNF secretory activity of cells varies depending on the frequency and duration of exposure. The application of millimeter waves induced a nonmonotonous course of the dose-effect curve for TNF changes in macrophages and splenocytes. Alternately, a stimulation and a decrease in TNF production were observed following the application of millimeter waves. On the contrary, centimeter waves provoked an activation in cytokine production. It is proposed that, in contrast to millimeter waves, the single application of centimeter waves to animals (within 2 to 96 h) or isolated cells (within 0.5 to 2.5 h) induced a much more substantial stimulation of immunity. 

Bioelectromagnetics. 2004 Oct;25(7):503-7. 

Differences in lethality between cancer cells and human lymphocytes caused by LF-electromagnetic fields.

Radeva M, Berg H. 

Labor Bioelectrochemistry (Campus Beutenberg, Jena) of the Saxonian Academy of Sciences, Leipzig, Germany. 

Abstract

The lethal response of cultured cancer cells lines K-562, U-937, DG-75, and HL-60 were measured directly after a 4 h exposure to a pulsating electromagnetic field (PEMF, sinusoidal wave form, 35 mT peak, 50 Hz) [Traitcheva et al. (2003): Bioelectromagnetics 24:148-158] and 24 h later, to determine the post-exposure effect. The results were found to depend on the medium, pH value, conductivity, and temperature. From these experiments, suitable conditions were chosen to compare the vitality between K-562 cells and normal human lymphocytes after PEMF treatment and photodynamic action. Both agents enhance necrosis synergistically for diseased as well as for healthy cells, but the lymphocytes are more resistant. The efficacy of PEMF on the destruction of cancer cells is further increased by heating (hyperthermia) of the suspension up to 44 degrees C or by lowering the pH-value (hyperacidity) to pH 6.4. Similar apoptosis and necrosis can be obtained using moderate magnetic fields (B < or = 15 mT 50/60 Hz), but this requires longer treatment of at least over a week. PEMF application combined with anticancer drugs and photodynamic therapy will be very effective. 

Bioelectromagnetics. 2004 Sep;25(6):466-73. 

Millimeter wave-induced suppression of B16 F10 melanoma growth in mice: involvement of endogenous opioids.

Radzievsky AA, Gordiienko OV, Szabo I, Alekseev SI, Ziskin MC. 

Center for Biomedical Physics, Temple University Medical School, Philadelphia, Pennsylvania 19140, USA. aradziev@temple.edu 

Abstract

Millimeter wave treatment (MMWT) is widely used in Eastern European countries, but is virtually unknown in Western medicine. Among reported MMWT effects is suppression of tumor growth. The main aim of the present “blind” and dosimetrically controlled experiments was to evaluate quantitatively the ability of MMWT to influence tumor growth and to assess whether endogenous opioids are involved. The murine experimental model of B16 F10 melanoma subcutaneous growth was used. MMWT characteristics were: frequency, 61.22 GHz; average incident power density, 13.3 x 10(-3) W/cm2; single exposure duration, 15 min; and exposure area, nose. Naloxone (1 mg/kg, intraperitoneally, 30 min prior to MMWT) was used as a nonspecific blocker of opioid receptors. Five daily MMW exposures, if applied starting at the fifth day following B16 melanoma cell injection, suppressed subcutaneous tumor growth. Pretreatment with naloxone completely abolished the MMWT-induced suppression of melanoma growth. The same course of 5 MMW treatments, if started on day 1 or day 10 following tumor inoculations, was ineffective. We concluded that MMWT has an anticancer therapeutic potential and that endogenous opioids are involved in MMWT-induced suppression of melanoma growth in mice. However, appropriate indications and contraindications have to be developed experimentally before recommending MMWT for clinical usage. 

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2004 Aug;21(4):546-8. 

Effects of steep pulsed electric fields on cancer cell proliferation and cell cycle.

[Article in Chinese] 

Yao C, Sun C, Mi Y, Xiong L, Hu L, Hu Y. 

Key Lab of High Voltage Engineering and Electrical New Technology, Ministry of Education, Chongqing University, Chongqing 400044, China. 

Abstract

To assess study the cytocidal and inhibitory effects of steep pulsed electric fields (SPEFs) on ovarian cancer cell line SKOV3, the cancer cell suspension was treated by SPEFs with different parameters (frequency, pulse duration, peak value of voltage). Viability rate and growth curves of two test groups (high dosage and low dosage of SPEFs) and one control group were also measured. The DNA contents and cell cycle were analyzed by flow cytometry (FCM). Different dosing levels of SPEFs exerted obviously different effects on cancer cell viability. With the enhancement of each pulse parameter, the viability rate was promoted and the inhibitory effect on the proliferation of treated cells was more evident. The cells exposed to SPEFs grew slower than the control. The ratio of S+G2/M phase cells was decreased, which restrained the DNA synthesis and division, but the ratio of G0/G1 phase cells was increased in the treated groups. It was also indicated that the SPEFs blocked the cell transition from G0/G1 phase to S+G2/M phase. There was a significant difference in cell cycle between treated group and control group (P<0.01). Lethal effects of SPEFs were represented by inhibiting the cancer cell proliferation at the cell level and by influencing the cell cycle at the DNA level.

Physiol Meas. 2004 Aug;25(4):1077-93.  

Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms.

 Beebe SJ, Blackmore PF, White J, Joshi RP, Schoenbach KH. 

Center for Pediatric Research, Eastern Virginia Medical School, Children’s Hospital for The King’s Daughters, Norfolk, VA, USA. sbeebe@chkd.com 

These studies describe the effects of nanosecond (10-300 ns) pulsed electric fields (nsPEF) on mammalian cell structure and function. As the pulse durations decrease, effects on the plasma membrane (PM) decrease and effects on intracellular signal transduction mechanisms increase. When nsPEF-induced PM electroporation effects occur, they are distinct from classical PM electroporation effects, suggesting unique, nsPEF-induced PM modulations. In HL-60 cells, nsPEF that are well below the threshold for PM electroporation and apoptosis induction induce effects that are similar to purinergic agonistmediated calcium release from intracellular stores, which secondarily initiate capacitive calcium influx through store-operated calcium channels in the PM. NsPEF with durations and electric field intensities that do or do not cause PM electroporation, induce apoptosis in mammalian cells with a well-characterized phenotype typified by externalization of phosphatidylserine on the outer PM and activation of caspase proteases. Treatment of mouse fibrosarcoma tumors with nsPEF also results in apoptosis induction. When Jurkat cells were transfected by electroporation and then treated with nsPEF, green fluorescent protein expression was enhanced compared to electroporation alone. The results indicate that nsPEF activate intracellular mechanisms that can determine cell function and fate, providing an important new tool for probing signal transduction mechanisms that modulate cell structure and function and for potential therapeutic applications for cancer and gene therapy.

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2004 Jun;21(3):433-5.  

Effect of steep pulsed electric fields on survival of tumour-bearing mice.

[Article in Chinese] 

Yao C, Sun C, Xiong L, Mi Y, Liao R, Hu L, Hu Y. 

College of Electrical Engineering, Chongqing University, Chongqing, 400044, China. 

To investigate the lethal effect of steep pulsed electric fields (SPEFs) on cancer cells and the life-prolonging effect of SPEFs on the survival of tumour-bearing mice, this study was carried out with the use of SPEFs to treat 40 BALB/C mice inoculated by cervical cancer. The lethal effect on cancer cells and the life-prolonging effect on tumour-bearing mice were examined and compared between the experiment group and control group. The survival periods of the experiment group and control group were 52.05 days and 33.03 days, respectively. There was a significant difference in survival curve between the two groups. The results confirmed the inhibitiory effect and lethal effect of SPEFs on cancer cells. SPEFs can prolong the survival period of tumour-bearing mice.

Ann Biomed Eng. 2003 Jan;31(1):80-90.  

Viability of cancer cells exposed to pulsed electric fields: the role of pulse charge.

Krassowska W, Nanda GS, Austin MB, Dev SB, Rabussay DP. 

Department of Biomedical Engineering, Duke University, Durham, NC 27708-0281, USA. wanda.krassowska@duke.edu 

The goal of this study was to collect a comprehensive set of data that related lethal effects of electric fields to the duration of the pulse. Electric pulses of different strengths and durations were applied to a suspension of HEp-2 cells (epidermoid carcinoma of the human larynx) using a six-needle electrode array connected through an autoswitcher to a square wave generator. Pulse durations varied from 50 micros to 16 ms and the ranges of electric field were adjusted for each duration to capture cell viabilities between 0% and 100%. After pulsation, cells were incubated for 44 h at 37 degrees C, and their viability was measured spectrophotometrically using an XTT assay. For each pulse duration (d), viability data were used to determine the electric field that killed half of the cells (E50). When plotted on logarithmic axes, E50 vs. d was a straight line, leading to a hyperbolic relationship: E50=const/d. This relationship suggests that the total charge delivered by the pulse is the decisive factor in killing HEp-2 cells.

Vopr Onkol. 2003;49(6):748-51.  

Experience with turbulent magnetic field as a component of breast cancer therapy.

[Article in Russian] 

Letiagin VP, Protchenko NV, Rybakov IuL, Dobrynin IaV. 

N.N. Blokhin Center for Oncology Research, Russian Academy of Medical Sciences, Zdorovje Research Center, Moscow. 

No adverse side-effects were reported in an investigation of the antitumor effect of turbulent magnetic field (TMF) carried out as a component of preoperative chemoradiotherapy for breast cancer at the Center’s Clinic. The study group included 114 patients with locally advanced tumors(T3, N1-N3, M0). According to the clinical, roentgenological and histological evidence on the end-results, the procedure was highly effective. Also, it was followed by shorter and less extensive postoperative lymphorrhea. 

Bioelectromagnetics. 2003 Feb;24(2):148-50. 

ELF fields and photooxidation yielding lethal effects on cancer cells.

Traitcheva N, Angelova P, Radeva M, Berg H. 

Laboratory of Bioelectrochemistry, Institute of Virology, FSU, Jena, Germany. 

Abstract

The lethal effect on human cancer cells was studied under three types of treatment: A) an ELF pulsed sinusoidal of 50 Hz electromagnetic field (PEMF) with amplitudes between 10 and 55 mT; B) the field and a cytostatic agent (actinomycin-C); and C) the field, the cytostatic agent, which has a photodynamic effect, and exposure to a halogen lamp. The results show a decreasing vitality of human K-562 and U-937 cancer cells in suspension with each additional treatment. Combination with other parameters as hyperthermia and/or hyperacidity could yield high killing rates by this noninvasive method. 

Technol Cancer Res Treat. 2002 Feb;1(1):71-82. 

Enhancing the effectiveness of drug-based cancer therapy by electroporation (electropermeabilization).

Rabussay DP, Nanda GS, Goldfarb PM. 

Genetronics, Inc., 11199 Sorrento Valley Road, San Diego CA 92121, USA. dietmarr@genetronics.com 

Abstract

Many conventional chemotherapeutic drugs, as well as DNA for cancer gene therapy, require efficient access to the cell interior to be effective. The cell membrane is a formidable barrier to many of these drugs, including therapeutic DNA constructs. Electropermeabilization (EP, often used synonymously with “electroporation”) has become a useful method to temporarily increase the permeability of the cell membrane, allowing a broad variety of molecules efficient access to the cell interior. EP is achieved by the application of short electrical pulses of relatively high local field strength to the target tissue of choice. In cancer therapy, EP can be applied in vivo directly to the tumor to be treated, in order to enhance intracellular uptake of drugs or DNA. Alternatively, EP can be used to deliver DNA into cells of healthy tissue to achieve longer-lasting expression of cancer-suppressing genes. In addition, EP has been used in ex vivo therapeutic approaches for the transfection of a variety of cells in suspension. In this paper, we communicate results related to the development of a treatment for squamous cell carcinomas of the head and neck, using electropermeabilization to deliver the drug bleomycin in vivo directly into the tumor cells. This drug, which is not particularly effective as a conventional therapeutic, becomes highly potent when the intracellular concentration is enhanced by EP treatment. In animal model experiments we found a drug dose of 1 U/cm(3) tumor tissue (delivered in 0.25 mL of an aqueous solution/cm3 tumor tissue) and an electrical field strength of 750 V/cm or higher to be optimal for the treatment of human squamous cell tumors grown subcutaneously in mice. Within 24-48 hours, the majority of tumor cells are rapidly destroyed by this bleomycin-electroporation therapy (B-EPT). This raises the concern that healthy tissue may be similarly affected. In studies with large animals we showed that normal muscle and skin tissue, normal tissue surrounding major blood vessels and nerves, as well as healthy blood vessels and nerves themselves, are much less affected than tumor tissue. Normal tissues did show acute, focal, and transitory effects after treatment, but these effects are relatively minor under standard treatment conditions. The severity of these effects increases with the number of electric pulse cycles and applied voltage. The observed histological changes resolved 20 to 40 days after treatment or sooner, even after excessive EP treatment. Thus, B-EPT is distinct from other ablative therapies, such as thermal, cryo, or photodynamic ablation, which equally affect healthy and tumor tissue. In comparison to surgical or radiation therapy, B-EPT also has potential as a tissue-sparing and function-preserving therapy. In clinical studies with over 50 late stage head and neck cancer patients, objective tumor response rates of 55-58%, and complete tumor response rates of 19-30% have been achieved. 

Bioelectromagnetics. 2002 Dec;23(8):578-85. 

Influence of 1 and 25 Hz, 1.5 mT magnetic fields on antitumor drug potency in a human adenocarcinoma cell line.

Ruiz-Gómez MJ, de la Peña L, Prieto-Barcia MI, Pastor JM, Gil L, Martínez-Morillo M. 

Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Málaga, Teatinos, Málaga, Spain. 

Abstract

The resistance of tumor cells to antineoplastic agents is a major obstacle during cancer chemotherapy. Many authors have observed that some exposure protocols to pulsed electromagnetic fields (PEMF) can alter the efficacy of anticancer drugs; nevertheless, the observations are not clear. We have evaluated whether a group of PEMF pulses (1.5 mT peak, repeated at 1 and 25 Hz) produces alterations of drug potency on a multidrug resistant human colon adenocarcinoma (HCA) cell line, HCA-2/1(cch). The experiments were performed including (a) exposures to drug and PEMF exposure for 1 h at the same time, (b) drug exposure for 1 h, and then exposure to PEMF for the next 2 days (2 h/day). Drugs used were vincristine (VCR), mitomycin C (MMC), and cisplatin. Cell viability was measured by the neutral red stain cytotoxicity test. The results obtained were: (a) The 1 Hz PEMF increased VCR cytotoxicity (P < 0.01), exhibiting 6.1% of survival at 47.5 microg/ml, the highest dose for which sham exposed groups showed a 19.8% of survival. For MMC at 47.5 microg/ml, the % of survival changed significantly from 19.2% in sham exposed groups to 5.3% using 25 Hz (P < 0.001). Cisplatin showed a significant reduction in the % of survival (44.2-39.1%, P < 0.05) at 25 Hz and 47.5 microg/ml, and (b) Minor significant alterations were observed after nonsimultaneous exposure of cells to PEMF and drug. The data indicate that PEMF can induce modulation of cytostatic agents in HCA-2/1(cch), with an increased effect when PEMF was applied at the same time as the drug. The type of drug, dose, frequency, and duration of PEMF exposure could influence this modulation. 

Biofizika. 2002 Mar-Apr;47(2):376-81. 

Immunomodulating effect of electromagnetic waves on production of tumor necrosis factor in mice with various rates of neoplasm growth.

[Article in Russian] 

Glushkova OV, Novoselova EG, Sinotova OA, Vrublevskaia VV, Fesenko EE. 

Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia. 

Abstract

The effects of low-density centimeter waves (8.15-18 GHz, 1 microW/cm2, 1 h daily for 14 days; MW) on tumor necrosis factor production in macrophages of mice with different growth rate of a cancer solid model produced after hypodermic injection of Ehrlich carcinoma ascites cells into hind legs were studied. After irradiation, an increase in the concentration of tumor necrosis factor in immunocompetent cells of healthy and, specially, of tumor-bearing animals was observed; and the effect of stimulation was higher upon exposure of mice carrying rapidly growing tumors. We suggest that the significant immunomodulating effect of low-density microwaves can be utilized for tumor growth suppression. 

Biofizika. 2001 Jan-Feb;46(1):131-5. 

Effect of centimeter m

Cell Biol. Int. 2002;26(7):599-603.

Extremely low frequency (ELF) pulsed-gradient magnetic fields inhibit malignant tumour growth at different biological levels.

Zhang X, Zhang H, Zheng C, Li C, Zhang X, Xiong W.

Source 

Biomedical Physics Unit, Department of Physics, Wuhan University, Wuhan, 430072, China. 

Abstract 

Extremely low frequency (ELF) pulsed-gradient magnetic field (with the maximum intensity of 0.6-2.0 T, gradient of 10-100 T.M(-1), pulse width of 20-200 ms and frequency of 0.16-1.34 Hz treatment of mice can inhibit murine malignant tumour growth, as seen from analyses at different hierarchical levels, from organism, organ, to tissue, and down to cell and macromolecules. Such magnetic fields induce apoptosis of cancer cells, and arrest neoangiogenesis, preventing a supply developing to the tumour. The growth of sarcomas might be amenable to such new method of treatment. 

icrowaves and the combined magnetic field on the tumor necrosis factor production in cells of mice with experimental tumors.

[Article in Russian] 

Novoselova EG, Oga? VB, Sorokina OV, Novikov VV, Fesenko EE. 

Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia. 

Abstract

The effect of fractionated exposure to low-intensity microwaves (8.15-18 GHz, 1 microW/cm2, 1.5 h daily for 7 days) and combined weak magnetic field (constant 65 1 microT; alternating–100 nT, 3-10 Hz) on the production of tumor necrosis factor in macrophages of mice with experimental solid tumors produced by transplantation of Ehrlich ascites carcinoma was studied. It was found that exposure of mice to both microwaves and magnetic field enhanced the adaptive response of the organism to the onset of tumor growth: the production of tumor necrosis factor in peritoneal macrophages of tumor-bearing mice was higher than in unexposed mice.

J Photochem Photobiol B. 2001 Nov 1;64(1):21-6.  

Photodynamic effect on cancer cells influenced by electromagnetic fields.

Pang L, Baciu C, Traitcheva N, Berg H. 

Institute of Physics, Nankai University, Nankai, PR China. 

The synergism of low-frequency electromagnetic field treatment and photodynamic effect on killing of human cancer cells is presented. The weak pulsating electromagnetic field (PEMF) generated by Helmholtz coils in the mT range influences the permeability of cell membranes for photosensitizers. Several types of sensitizers were excited by visible light during incorporation without and with two kinds of PEMF treatment. In the first part suitable photosensitizers were selected in the absorption range between 400 and 700 nm against human myeloid leukaemia K562 and human histiocytic lymphoma U937 cells by treatment of PEMF consisting of rectangular pulse groups. In the second part amplitude and frequency dependencies were measured using sinuous PEMF and white light with the result that after 12 min the PEMF treatment enhanced photodynamic effectivity by more than 40% over the control value. Taking into account the influence of many parameters, an additional optimization will be possible by photodynamic PEMF synergism for an increased drug delivery in general. 

Bioelectromagnetics. 2001 Oct;22(7):503-10. 

Pulsed electromagnetic fields affect the intracellular calcium concentrations in human astrocytoma cells.

Pessina GP, Aldinucci C, Palmi M, Sgaragli G, Benocci A, Meini A, Pessina F. 

Institute of General Physiology and Nutritional Science, University of Siena, Italy. pessina@unisi.it 

Abstract

Experiments assessed whether long term exposure to 50 Hz pulsed electromagnetic fields with a peak magnetic field of 3 mT can alter the dynamics of intracellular calcium in human astrocytoma U-373 MG cells. Pretreatment of cells with 1.2 microM substance P significantly increased the [Ca(2+)](i). The same effect was also observed when [Ca(2+)](i) was evaluated in the presence of 20 mM caffeine. After exposure to electromagnetic fields the basal [Ca(2+)](i) levels increased significantly from 143 +/- 46 nM to 278 +/- 125 nM. The increase was also evident after caffeine addition, but in cells treated with substance P and substance P + caffeine we observed a [Ca(2+)](i) decrease after exposure. When we substituted calcium-free medium for normal medium immediately before the [Ca(2+)](i) measurements, the [Ca(2+)](i) was similar to that measured in the presence of Ca(2+). In this case, after EMFs exposure of cells treated with substance P, the [Ca(2+)](i), measured without and with addition of caffeine, declined from 824 +/- 425 to 38 +/- 13 nM and from 1369 +/- 700 to 11 +/- 4 nM, respectively, indicating that electromagnetic fields act either on intracellular Ca(2+) stores or on the plasma membrane. Moreover the electromagnetic fields that affected [Ca(2+)](i) did not cause cell proliferation or cell death and the proliferation indexes remained unchanged after exposure. 

Cell Biol Int. 2002;26(7):599-603.

Extremely low frequency (ELF) pulsed-gradient magnetic fields inhibit malignant tumour growth at different biological levels.

Zhang X, Zhang H, Zheng C, Li C, Zhang X, Xiong W.

Source

Biomedical Physics Unit, Department of Physics, Wuhan University, Wuhan, 430072, China.

Abstract

Extremely low frequency (ELF) pulsed-gradient magnetic field (with the maximum intensity of 0.6-2.0 T, gradient of 10-100 T.M(-1), pulse width of 20-200 ms and frequency of 0.16-1.34 Hz treatment of mice can inhibit murine malignant tumour growth, as seen from analyses at different hierarchical levels, from organism, organ, to tissue, and down to cell and macromolecules. Such magnetic fields induce apoptosis of cancer cells, and arrest neoangiogenesis, preventing a supply developing to the tumour. The growth of sarcomas might be amenable to such new method of treatment.

Cell Mol Biol (Noisy-le-grand). 2001;47 Online Pub:OL115-7. 

Inhibition of proliferation of human lymphoma cells U937 by a 50 Hz electromagnetic field.

Glück B, Güntzschel V, Berg H. 

Laboratory Cell Culture, Institute of Virology, Friedrich-Schiller-University Jena, Germany. i6glbr@rz.uni-jena.de 

Abstract

Weak pulsating electromagnetically induced fields (PEMF) by Helmholtz coils changes cell metabolism, if cells are treated with a certain range of frequency and amplitude. The influence on proliferation of human histiocytic lymphoma cells U937 has been studied applying a sinusoidal 50 Hz field with amplitudes of the flux density B = 0.3 to 4.7 mT for 4 days. No difference between experiment and control was found in the region 0.3 and 2 mT. However, stronger fields (> or =2.5 mT) inhibit cell division. Fields > or =3.5 mT treatment kill > or =80% of the cell number at the beginning (1.5 x 10(5)/ml). This effect may be an electromagnetocally induced cell death as the first step for a non-invasive application on cell proliferation process. 

Laryngoscope. 2001 Jan;111(1):52-6. 

Electroporation therapy for head and neck cancer including carotid artery involvement.

Allegretti JP, Panje WR. 

Department of Otolaryngology, Rush-Presbyterian-St Luke’s Medical Center, Rush Medical College, Chicago, Illinois 60612, USA. 

Abstract

OBJECTIVES: Electroporation therapy with intralesional bleomycin (EPT) is a novel, technically simple outpatient technique in which high-voltage electric impulses delivered into a neoplasm transiently increase cell membrane permeability to large molecules, including cytotoxic agents, causing localized progressive necrosis. Unlike many laser ablation methods, EPT can treat bulky tumors (>2 cm) with complete penetration. Our recent publication confirms an excellent response rate in the use of EPT in a clinical trial. STUDY 

DESIGN, PATIENTS, AND METHODS: Following our initial prospective study report in 1998, we have followed our entire initial cohort (10 patients) of patients with head and neck cancer beyond 24-months follow-up. Additionally, we have used this approach to treat four additional patients (total: 9 males/5 females) with upper aerodigestive tract squamous cell carcinoma, including three with internal carotid artery (ICA) involvement up to or within the skull base. Two patients underwent preoperative balloon test occlusion with cerebral perfusion studies followed by carotid embolization. EPT was then done safely at least 2 weeks later to avoid the temporary hypercoagulable state. 

RESULTS: Within the overall cohort (14 patients) 6 patients had a complete response, 6 had a partial response, and 2 did not respond (overall 85.7% response rate). Both patients with ICA involvement had a partial or complete response to treatment; neither patient had a hemorrhagic or neurologic complication. Overall, 13 of the 14 patients were treated for persistent or recurrent head and neck cancer. Two of the four patients with early recurrent stage tumors had no evidence of recurrence after EPT with an average follow-up of 31.5 months. The overall early stage tumor group had four complete responders out of five (80%). On the contrary, only 2 of 9 patients with advanced recurrent stage tumors were disease-free at 18 months. Morbidity was low for early stage tumors, but higher for advanced tumors with complications, including poor wound healing, dysphagia, and osteomyelitis. There were no treatment-related deaths. 

CONCLUSION: We found EPT to be safe and efficacious in patients with head and neck cancer, even with internal carotid artery involvement. Patients with early stage recurrences have the potential for prolonged survival beyond 2 years without the morbidity of surgery and radiation or toxicity of systemic chemotherapy. Because of its superb access qualities even for bulky tumors, EPT is a potential method of delivery for other tumoricidal agents such as in genetic-altering schemes.

Vopr Onkol. 2000;46(4):469-72.  

Use of artificial magnetic field for rehabilitation of children with malignant tumors.

[Article in Russian] 

Kiselev AV, Grushina TI. 

N.N. Blokhin Center for Oncology Research, Russian Academy of Medical Sciences, Moscow. 

Local complications of standard intravenous injections for chemotherapy and due to error of administration were compared in 400 patients (200 of them children) and general wound pathologies described. Treatment for wounds included two modalities: standard medication and alternating or pulsating magnetic field. Magnetic therapy proved highly effective: wound healing was 3-3.5 times faster while duration of treatment–2-3 times shorter than in standard procedure. Clinically-verified partial adhesion-related intestinal obstruction was eliminated by magnetic procedure in 18 children after combined treatment for lymphosarcoma involving the ileum. 

Bioelectromagnetics. 2000 Feb;21(2):112-21. 

Effects of PEMF on a murine osteosarcoma cell line: drug-resistant (P-glycoprotein-positive) and non-resistant cells.

Miyagi N, Sato K, Rong Y, Yamamura S, Katagiri H, Kobayashi K, Iwata H. 

Department of Orthopaedic Surgery, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan. 

Abstract 

After pulsed exposure of Dunn osteosarcoma cells (nonresistant cells) to Adriamycin (ADR) at increasing concentrations and single-cell cloning of surviving cells, ADR-resistant cells were obtained. These resistant cells expressed P-glycoprotein and had resistance more than 10 times that of their nonresistant parent cells. Compared to the nonresistant cells not exposed to pulsing electromagnetic fields (PEMF) in ADR-free medium, their growth rates at ADR concentrations of 0.01 and 0.02 micrograms/ml, which were below IC50, were 83.0% and 61.8%, respectively. On the other hand, in the nonresistant cells exposed to PEMF (repetition frequency, 10 Hz; rise time, 25 microsec, peak magnetic field intensity, 0.4-0.8 mT), the growth rate was 111.9% in ADR-free medium, 95.5% at an ADR concentration of 0.01 micrograms/ml, and 92.2% at an ADR concentration of 0.02 micrograms/ml. This promotion of growth by PEMF is considered to be a result of mobilization of cells in the non-proliferative period of the cell cycle due to exposure to PEMF. However, at ADR concentrations above the IC50, the growth rate tended to decrease in the cells not exposed to PEMF. This may be caused by an increase in cells sensitive to ADR resulting from mobilization of cells in the non-proliferative period to the cell cycle. The growth rate in the resistant cells exposed to PEMF was significantly lower than that in the non-exposed resistant cells at all ADR concentrations, including ADR-free culture (P</=0.0114). Therefore, this study suggests that PEMF promotes the growth of undifferentiated cells but progressively suppresses the growth of more differentiated cells, i.e., PEMF controls cell growth depending on the degree of cell differentiation. This study also shows the potentiality of PEMF as an adjunctive treatment method for malignant tumors 

J Physiol Biochem. 1999 Jun;55(2):79-83. 

Growth modification of human colon adenocarcinoma cells exposed to a low-frequency electromagnetic field.

Ruiz Gómez MJ, Pastor Vega JM, de la Peña L, Gil Carmona L, Martínez Morillo M. 

Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Teatinos, Spain. mjrg@uma.es 

Abstract

The influence of variable low-intensity, low-frequency electromagnetic fields on culture cells is investigated. Human colon adenocarcinoma cells were exposed to a rectangular and variable magnetic field (1 and 25 Hz; 1.5 mT peak). Cultures were exposed to a dose for 15 and 360 minutes, and after 24 hours incubation, cell viability was measured with neutral red stain. The group treated for 15 minutes showed a statistically significant increase in cell growth with 1 Hz (p < 0.002) and 25 Hz (p < 0.003). In contrast, a significant decrease in cell growth was found in those cultures treated with 1 Hz for 360 minutes (p < 0.02). The effects reported could be influenced by the magnetic field frequency and the exposure time.

Am J Physiol. 1997 May;272(5 Pt 2):R1677-83.  

Electrical fields enhance growth of cancer spheroids by reactive oxygen species and intracellular Ca2+.

Wartenberg M, Hescheler J, Sauer H. 

Institute for Neurophysiology, University of Cologne, Germany. 

A single electrical field pulse (500 V/m) with a duration of 60 s increased tumor outgrowth over a postpulse period of 24 h. RNA staining with acridine orange showed a rise in RNA content in pulsed spheroids, indicating stimulation of cell cycle activity. The electropulse induced an intracellular Ca2+ concentration ([Ca2+]i) transient that started approximately 40 s after the onset of the electrical field. Neither the presence of extracellular Ni2+ (0.5 mM) nor the absence of extracellular Ca2+ impeded the [Ca2+]i rise. It was, however, totally blocked by thapsigargin (1 microM), indicating that the initial Ca2+ response is due to Ca2+ release from intracellular stores. The [Ca2+]i transient was paralleled by an increase in reactive oxygen species (ROS), as revealed using 2′,7′-dichlorofluorescein diacetate as an indicator. The radical scavengers N-acetyl-L-cysteine (NAC)(20 mM) and dehydroascorbate (5 mM) inhibited both ROS production and the [Ca2+]i transient during electrical field treatment. The mitogenic activation was dependent on the rise in [Ca2+]i because inhibition of Ca2+ release during electrical field treatment by addition of either thapsigargin or NAC to the incubation medium abolished the observed effect. We conclude that a single, direct current electrical field pulse induces production of ROS, which in turn mediate Ca2+ release from intracellular stores and activate cell cycle activity in multicellular spheroids. 

Anticancer Res. 1997 May-Jun;17(3C):2083-8. 

Enhanced potency of daunorubicin against multidrug resistant subline KB-ChR-8-5-11 by a pulsed magnetic field.

Liang Y, Hannan CJ Jr, Chang BK, Schoenlein PV. 

Department of Radiology, Research and Nuclear Medicine, Medical College of Georgia, Augusta 30912, USA. 

Abstract

Tumor cell resistance to many unrelated anticancer drugs is a major obstacle during cancer chemotherapy. One mechanism of drug resistance is thought to be due to the efflux of anticancer drugs caused by P-glycoprotein. In recent years, magnetic fields have been found to enhance the potency of anticancer drugs, with favorable modulation of cancer therapy. In this study, KB-ChR-8-5-11, a multidrug resistant (MDR) human carcinoma subline, was used as a model to evaluate the ability of pulsed magnetic fields (PMF) to modulate the potency of daunorubicin (DNR) in vivo and to determine the appropriate order of exposure to drugs and PMF using an in vitro cytotoxicity assay. Solenoid coils with a ramped pulse current source were used at 250 pulses per second for both in vivo and in vitro experiments. For the in vivo study, KB-ChR-8-5-11 cells were inoculated into thymic Balbc-nu/nu female mice. Treatment was begun when the average tumor volume reached 250-450 mm3. Treatment consisted of whole body exposure to PMF for one hour, followed immediately by intravenous (i.v.) injection of 8 mg/kg DNR designated as day 0, and repeated on days 7 and 14. Among the various groups, significant differences in the tumor volume were found between PMF + saline and PMF + DNR groups (p = 0.0107) at 39 days and 42 days (p = 0.0101). No mice died in the PMF alone group, and no toxicity attributable to PMF was found during the experimental period. For the in vitro studies, the sulforhodamine blue (SRB) cytotoxicity assay was used to determine the effect of the sequence which cells are exposed to PMF and/or DNR. Cells were exposed to PMF either before (pre-PMF) or after (post-PMF) drug was added. Results showed that the IC50 was significantly different between controls and pre-PMF + DNR groups (P = 0.0096, P = 0.0088). The IC50 of the post-PMF + DNR group was not found to be significantly different from control groups. Thus, the data in this report demonstrates that PMF enhanced the potency of DNR against KB-ChR-8-5-11 xenograft in vivo, while the efficacy of DNR was potentiated in vitro by PMF exposure only when PMF exposure occurred in the presence of drug. The data in vitro suggest that the mechanism by which PMFs modulate DNR’s potency may be by inhibition of the efflux pump, P-glycoprotein. Further work to determine conditions for maximum modulation of drug potency by PMFs is warranted. 

Zhongguo Zhong Xi Yi Jie He Za Zhi. 1997 May;17(5):286-8. 

Effect of acupoint irradiation with Q-wave millimeter microwave on peripheral white blood cells in post-operational treatment with chemotherapy in stomach and colorectal cancer patients.

[Article in Chinese] 

Wu JG, Huang WZ, Wu BY. 

Oncology Department of Second Ningde District Hospital, Fujian. 

Abstract

OBJECTIVE: To explore the biological effect of Q-wave millimeter microwave (QWMM). 

METHODS: The QWMM was used to irradiate the acupoints Xuehai (Sp10) and Geshu (B17) in treating post-operational and chemotherapy treated stomach cancer and colorectal cancer patients. The effect of irradiation on chemotherapy affected peripheral white blood cells was observed. 62 cases (stomach cancer 42, colorectal cancer 20) in total were divided into two groups: group A, 21 cases (stomach cancer 15, colorectal cancer 6) the irradiation began 10 days after operation, and on the 16th day the chemotherapy combined with irradiation started. Group B had 41 cases (stomach cancer 27, colorectal cancer 14), in which the irradiation began immediately after the occurrence of chemotherapy induced peripheral WBC reduction, which persisted for at least 12 days. 

RESULTS: The effective rate for the group A and B was 85.7% (18/21) and 73.2% (30/41) respectively. The total effective rate of the two groups was 77.4% (48/62). The effective rate of group A was significantly higher than that of group B, P < 0.01. 

CONCLUSION: GWMM irradiation at acupoints could promote the hematopoietic function of bone marrow, and the irradiation performed 1 week before chemotherapy yielded even better protection on bone marrow.

Bioelectromagnetics 1996;17(5):358-63.  

Exposure to strong static magnetic field slows the growth of human cancer cells in vitro.

Raylman RR, Clavo AC, Wahl RL. 

University of Michigan Medical Center, Department of Internal Medicine, Ann Arbor, USA. 

Proposals to enhance the amount of radiation dose delivered to small tumors with radioimmunotherapy by constraining emitted electrons with very strong homogeneous static magnetic fields has renewed interest in the cellular effects of prolonged exposures to such fields. Past investigations have not studied the effects on tumor cell growth of lengthy exposures to very high magnetic fields. Three malignant human cell lines, HTB 63 (melanoma), HTB 77 IP3 (ovarian carcinoma), and CCL 86 (lymphoma: Raji cells), were exposed to a 7 Tesla uniform static magnetic field for 64 hours. Following exposure, the number of viable cells in each group was determined. In addition, multicycle flow cytometry was performed on all cell lines, and pulsed-field electrophoresis was performed solely on Raji cells to investigate changes in cell cycle patterns and the possibility of DNA fragmentation induced by the magnetic field. A 64 h exposure to the magnetic field produced a reduction in viable cell number in each of the three cell lines. Reductions of 19.04 +/- 7.32%, 22.06 +/- 6.19%, and 40.68 +/- 8.31% were measured for the melanoma, ovarian carcinoma, and lymphoma cell lines, respectively, vs. control groups not exposed to the magnetic field. Multicycle flow cytometry revealed that the cell cycle was largely unaltered. Pulsed-field electrophoresis analysis revealed no increase in DNA breaks related to magnetic field exposure. In conclusion, prolonged exposure to a very strong magnetic field appeared to inhibit the growth of three human tumor cell lines in vitro. The mechanism underlying this effect has not, as yet, been identified, although alteration of cell growth cycle and gross fragmentation of DNA have been excluded as possible contributory factors. Future investigations of this phenomenon may have a significant impact on the future understanding and treatment of cancer.

   
J Cell Biochem. 1993 Apr;51(4):387-93.  

Beneficial effects of electromagnetic fields.

 Bassett CA. 

Bioelectric Research Center, Columbia University, Riverdale, New York 10463. 

Selective control of cell function by applying specifically configured, weak, time-varying magnetic fields has added a new, exciting dimension to biology and medicine. Field parameters for therapeutic, pulsed electromagnetic field (PEMFs) were designed to induce voltages similar to those produced, normally, during dynamic mechanical deformation of connective tissues. As a result, a wide variety of challenging musculoskeletal disorders have been treated successfully over the past two decades. More than a quarter million patients with chronically ununited fractures have benefitted, worldwide, from this surgically non-invasive method, without risk, discomfort, or the high costs of operative repair. Many of the athermal bioresponses, at the cellular and subcellular levels, have been identified and found appropriate to correct or modify the pathologic processes for which PEMFs have been used. Not only is efficacy supported by these basic studies but by a number of double-blind trials. As understanding of mechanisms expands, specific requirements for field energetics are being defined and the range of treatable ills broadened. These include nerve regeneration, wound healing, graft behavior, diabetes, and myocardial and cerebral ischemia (heart attack and stroke), among other conditions. Preliminary data even suggest possible benefits in controlling malignancy.

In Vivo. 1991 Jan-Feb;5(1):39-40.  

Effect of a 9 mT pulsed magnetic field on C3H/Bi female mice with mammary carcinoma. A comparison between the 12 Hz and 460 Hz frequencies.

Bellossi A, Desplaces A. 

Laboratoire de Biophysique, Faculte de Medecine, Rennes, France. 

In a previous experiment, the exposure of tumoral C3H/Bi female mice to a 9 mT, 460 Hz pulsed magnetic field led to an increase in the length of survival in the late period of the disease; this might be due to a hampered metastatic process. In the present study 27 controls and 52 exposed mice were treated with the same protocol (a 10-minute exposure, 3 non-consecutive days a week, from 2-3 weeks after the tumors appeared until death) but with a 12 Hz PMF. In this experiment the 12 Hz PMF appeared to increase length of survival times in the early period of the disease.

Sov Med. 1991;(7):25-7.  

The assessment of the efficacy of the effect of a rotational magnetic field on the course of the tumor process in patients with generalized breast cancer.

[Article in Russian] 

Bakhmutskii NG, Pyleva TA, Frolov VE, Sinitskii DA, Ripa IM. 

The efficacy of rotational magnetic field generated by a “Magnitoturbotron” unit was evaluated in 51 women with advanced breast cancer. The effect resulted from an action on the patient’s body by modulated rotational magnetic field changing in cycles according to induction. A significant response was achieved in 27 of 51 patients. There was no hemopoiesis suppression, negative functional shifts. The unit is recommended for introduction in a combined treatment of breast cancer.

Jpn J Cancer Res. 1990 Sep;81(9):956-61.  

Treatment of experimental tumors with a combination of a pulsing magnetic field and an antitumor drug.

Omote Y, Hosokawa M, Komatsumoto M, Namieno T, Nakajima S, Kubo Y, Kobayashi H. 

Laboratory of Pathology, Hokkaido University School of Medicine, Sapporo. 

We investigated the effects of a combination treatment involving a pulsing magnetic field (PMF) and an antitumor drug, mitomycin C (MMC), on two experimental tumors (fibrosarcoma KMT-17 and hepatocellular carcinoma KDH-8) in WKA rats, paying attention to possible potentiation of the therapeutic effect of the antitumor drug. PMF was obtained using a system generating a pulsed current in a solenoid coil. On day 7 after tumor implantation into the right thighs of rats, the region of the tumor was exposed to PMF (frequency 200 Hz, mean magnetic flux density 40 gauss) for 1 h immediately after iv injection of MMC at a dose of 1 mg/kg. Survival rates at day 90 of KMT-17 implanted rats were 0% (0/10) in the non-treated group, 34% (4/12) in the MMC-treated group, 47% (6/13) in the PMF-treated group and 77% (10/13) in the MMC/PMF combination group. The increase of life span (ILS) of KDH-8-implanted rats in the combination therapy group was significantly prolonged (%ILS 17.6%) compared with that in the MMC-treated (%ILS 3.4%) and PMF-treated (%ILS 7.6%) groups. By using cultured cells of the above two lines of tumor, the therapeutic effects of MMC and PMF were also determined from the cell colony-forming efficiency in soft agar. The colony-forming efficiencies of both cell lines were significantly suppressed in the combination therapy group compared with those in the other single therapy groups. The present results indicate that PMF exhibited a potentiation of the antitumor effect of mitomycin C.

Nippon Geka Gakkai Zasshi. 1988 Aug;89(8):1155-66. 

 

An experimental attempt ot potentiate therapeutic effects of combined use of pulsing magnetic fields and antitumor agents.

[Article in Japanese] 

Omote Y. 

First Department of Surgery, Asahikawa Medical College, Japan. 

With a view to examining the possible clinical applicability of pulsing magnetic fields (PMF), we investigated the effects of weak, non-heat inducing, PMF on DNA synthesis and sensitivity of cancer cells to antitumor agents. Leukemic T-cells (Molt-4) and a pancreatic ductal adenocarcinoma (solid tumor) transplanted in a Syrian golden hamster were used for the in vitro experiment and in vivo experiment respectively. In order to evaluate the effects of PMF on the DNA synthesis of cancer cells and the incorporation of antitumor agent into cancer cells, cultured cells or solid tumor were exposed to PMF generated by a solenoid coil immediately after 3H-or 14C-thymidine and 3H-methotrexate administration respectively. Thymidine uptake was found to increase by exposure to PMF, as did also 3H-methotrexate uptake by leukemic T-cells. Following exposure to PMF immediately after administration of methotrexate or mitomycin C, antitumor activity in both cells was increased. From these results it appears that the incorporation of antitumor agents into the cells increases by eddy current stimulation induced by PMF, and that the cell cycle shifts from the non-proliferative to proliferative phase, resulting in increased antitumor activity.

Anticancer Res. 1987 May-Jun;7(3 Pt B):391-3.  

Tumoricidal cells increased by pulsating magnetic field.

Malter M, Schriever G, Kuhnlein R, Suss R. 

Repeated applications of pulsed magnetic fields (right-angle waves, 50 Hz = 135 Gauss, 2 Hz = 262 Gauss) significantly enhanced the number and the tumoricidal activity of nonparenchymal liver cells. The transplantable mouse leukemia L1210 used as a tumor model was not significantly influenced, either directly or during Cyclophosphamide treatment

Vopr Onkol. 1980;26(1):28-34.  

Morphological criteria of lung cancer regression under the effect of magnetotherapy.

[Article in Russian] 

Ogorodnikova LS, Gairabed’iants NG, Ratner ON, Chirvina ED, Sem LD. 

The complex investigation (histological, histochemical, morphological, electrone microscopy) of lung cancerous tumors from 20 patients, subjected preoperatively to the action of magnetic fields enhancing the antitumor resistance by developing general nonspecific adaptation reactions: activation and training, has revealed a number of morphological changes which indicate a marked antitumor effect of magnetic fields. These changes were maximum manifest after 20-30 sessions. High-differentiated adenocarcinoma proved to be mostly sensitive to the magnetic field action.